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Abstract 

Forest insects play an essential role in forest ecosystems because they contribute to the 

regeneration of trees and provide new habitats for wildlife. However, forest insect infestations can 

become severe and cause economic problems due to the damage and destruction they cause in 

commercially valuable forest lands. The need for pest management arises when native forest insects 

expand their populations beyond an acceptable threshold and become “pests” or non-native species 

become invasive. Pest management problems can be solved using a range of economic tools; stochastic 

dynamic programming models and computable general equilibrium models can be considered “bookends” 

of tools as they focus on the microeconomic stand level and the overall macroeconomic level for 

government. Economists can help stand managers and policymakers make decisions on whether or not to 

take action to mitigate the disturbance by using these “bookend” tools to compare the potential costs and 

benefits of such action in the face of uncertainty and with respect to the direct and indirect consequences 

that may arise. 
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1. Motivation 

Forest insects play an essential role in forest ecosystems because they contribute to the 

regeneration of trees and provide new habitats for wildlife. However, forest insect infestations can 

become severe and cause economic problems due to the damage and destruction they cause in 

commercially valuable forest stands. The need for pest management arises when native forest insects 

expand their populations beyond an acceptable threshold and become “pests” or non-native species 

become invasive. Pest management is a component of forest management that requires attention and 

analysis. This essay aims to provide both policymakers and stand managers with methods of analyzing 

the potential costs of invasive pests (both native and non-native) in order to make informed mitigation 

decisions on investments to control the pest.  

For countries that are reliant on agriculture, forestry and tourism/recreation, such as Canada, pest 

invasions can be extremely important (Moore, 2005). If the problem is severe enough, resources need to 

be allocated in order to suppress or eradicate the pest or to manage forests differently to account for the 

uncertainty of invasion. For forest managers, the invasion of pests introduces a level of uncertainty into 

their stand decisions on whether to harvest and how to replant as to maximize the harvest value of their 

stands. This problem can be analyzed using stochastic dynamic programming. Higher-level governments 

may be concerned with how a problem in one sector, such as forestry, can have reverberating impacts on 

other economic sectors, factors of production and output. This can be solved using a computable-general 

equilibrium, which can model an entire country’s economy and evaluate feedback effects in all sectors 

and factors of production caused by shocks in one unique sector. The two unique perspectives require 

different inputs and produce unique results that can analyze and help solve the different problems that 

stand operators/managers, provinces or countries face when dealing with a potentially destructive pest 

disturbance.  



 5 

2. Background Information 

2.1 Invasive Species  

The disturbance of ecosystems, particularly forests, by invasive species is a serious problem 

globally. Here, invasive species will be referred to as “insects and diseases that spread beyond their 

known usual range” (NRCAN, 2016). Native species such as the mountain pine beetle have become 

invasive in Canada. Non-native species are species that have been introduced into Canadian forests and 

invasive non-native species have become a major concern in Canada as of recent history (e.g., Emerald 

Ash Borer, brown spruce longhorn beetle). 

The movement of non-native species from origin to new habitats is a not a new phenomenon. 

Even without the human factor, plants, insects and micro-organisms have migrated and established 

themselves in new locations through natural processes. However, the growth of international trade and 

travel and overall globalization increased the natural flow and movement of species across continents.  

Invasive native and non-native pests can be incredibly harmful to their new habitats due to the 

damage and disturbance they cause in the ecosystems. The forest disturbance caused by these pests can 

cause damage through ecological means by impacting the productivity and quality of forestry products 

and through economic means by impacting trade, output levels, costs for government intervention, and 

job opportunities.  

2.2 Establishment of Invasive Exotic Species 

To understand the magnitude of the invasive pest problem facing the forest sector, it is important 

to understand the movement of these species and how they can establish themselves in new habitats. 

Management of invasive non-native species is typically sorted into three different processes: arrival, 

establishment, and spread (Liebhold et al., 1995). 1 

                                                        
1 Material in sections 2 and 3 is largely based on Liebhold et al. (1995). 
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2.3 Arrival 

There has been a natural ebb and flow of organisms across continents and water bodies for 

millions of years, which occurred independently of human activity. The geographical barriers faced in the 

past, such as oceans, mountains and vast land masses, prevented species from mixing and greatly 

influenced species divergence and speciation (Mayr, 1963). Basic weather can aid in the movement of 

non-native organisms. For example, adults or immature insects, plant seeds and fungus spores can be 

blown into new areas with the wind, storms or other major weather events (Krcmar-Nozic et al., 2000).  

In the past century, growth in international trade and travel allowed humans and goods to 

overcome geographical barriers with increasing frequency, which unintentionally transported pests into 

new ecosystems around the world (Epanchin-Niell and Liebhold, 2015). Simberloff (1986) found that 

species introductions are correlated to shipping and trading routes as many North American pests have 

roots in Europe. Humans have altered the natural ebb and flow of organism movement through both 

purposeful and accidental introduction. Pests and animals have been found to “hitch-hike” to new areas 

by attaching onto transportation modes such as ship hulls, shipping containers, low quality wood packing 

material (or dunnage), passenger baggage, et cetera (Lovett et al., 2016). These pallets and other low 

quality wood packaging material pose a great risk to invasion as they can house immature life stages of 

phloem and wood boring insects and transport them to novel environments.  

The growth of human activity has also, unintentionally, led to the disturbance of natural 

ecosystems for resources and relocation. The disturbance of ecozones makes the areas vulnerable to non-

native pest establishment as competition is typically lower in such areas and leaves open “niches” that 

allow the organism to flourish. 

The appropriate management strategy depends on the phase of invasion. One of the most efficient 

methods of preventing invasion at the arrival stage is to exclude the pest entirely. This can be 
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accomplished by way of inspection of goods coming in from at-risk areas and quarantine of at-risk areas 

to prevent further spread.  

2.4 Establishment 

If non-native species are successfully introduced into new habitats, establishment is the next stage 

in the process of invasion in which the population persists for many generations. Another way to define 

establishment is “the point where the species reach population sizes at which extinction is no longer 

likely” (Lovett et al., 2016). Not all species that are introduced become established. Other factors also 

influence establishment such as number of natural enemies and level of competition, habitat suitability, 

size of original introduction, et cetera (Krcmar-Nozic et al., 2000). For example, in Canada, very few 

species succeed in establishment due to natural barriers such as variable climate and topography 

(NRCAN, 2016).  

The process of establishment is full of uncertainty. First, it is uncertain if the species will 

successfully establish once it arrives in a new location as it is unable to adapt to its new environments 

(allee effect). These “founder populations” are typically small and are therefore at great risk of 

eradication; it is best to think of establishment in terms of the probability that the founder population will 

establish as a continuous function of its initial population size and other factors such as genetic diversity 

and intrinsic rate of reproduction. Other environmental factors can play into this probability function, 

such as climate and wind that can create favourable or unfavorable conditions for establishment.  If the 

species does survive, there is a possibility of an “invasion lag.” Invasion lags refer to the process by 

which species remain at relatively low densities until visible outbreak and therefore delay the onset of 

damage (Epanchin-Niell and Liebhold, 2015; Krcmar-Nozic et al., 2000).  

Establishment is the point of invasion where it is most beneficial for managers to act and attempt 

eradication to reverse the process and eliminate possibilities of population bursts. It is likely that 

eradication will only be successful in circumstances where the invasive population is low in density and is 
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restricted in its spatial distribution. During the establishment phase, population suppression tactics such as 

detection and destruction of infestations are required for eradication. For example, the use of Bacillus 

thuringiensis kurstaki (BTK) is used in aerial and ground sprays to suppress populations, pheromone 

treatments are used to disrupt mating, and general destruction of infested materials can also eliminate 

infestations and prevent further spread.  

2.5 Spread 

The final step of the invasion process is spread: the increase in size and scope of the established 

population. The spread of invasive species is in part driven by two separate processes: population growth 

and dispersal. Many previous papers have focused on spread models with respect to biological invasions, 

a generalized explanation of spread models can be found in Liebhold et al. (1995).  

There are a variety of methods to halt spread and bring invasive populations back to manageable 

and eradicable levels. If the species can advance through the stages of invasion, the probability of 

eradication falls and costs increase due to eradication programming. Exclusion and quarantines can 

minimize invasive populations. For example, the Canadian Food Inspection Agency (CFIA) currently 

regulates the movement of logs, Christmas trees and other forest products to limit the movement of the 

pine shoot beetle. These methods are costly, as they require labour and time at border crossings to inspect 

all shipments and therefore impede trade. At this stage of invasion, it may not be possible to eradicate the 

species fully, but it is possible to slow down the spread. Lastly, the spread of invasives can be limited 

using biological and chemical controls such as aerial or ground spraying of BTK or other chemicals, 

importation of natural enemies to restore the population to a smaller size. 

3. Impact of Pest Invasions  

Pest invasions can be extremely costly and have lasting impacts ecologically, economically and 

recreationally. Pest invasions can cause major disruptions in forests and ecosystems. Economically, pest 
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invasions and subsequent eradication programs can have major impacts on all players in the economy: 

producers, consumers, and the government.   

3.1 Ecological Impacts of Pest Invasions 

Exotic pests are similar to native forest pests as they both can cause damage to their ecosystems 

and both can have large effects on tree growth, reproduction and vitality (Liebhold et al., 1995).  It is 

important to note that the impacts will depend on the type of damage caused by the insect and the traits of 

the pest; for example, the host specificity of the insect, its reproductive and dispersal capabilities, 

productivity, and nutrient cycling all play a role in the level of impact (Lovett et al., 2016).  

Exotic pests pose a threat to forest species composition and productivity of their ecosystems 

because, once they spread, there are no natural enemies that can keep their populations in check and the 

trees do not have natural resistance to these pests. Exotic pests can transmit parasites or pathogens to trees 

or plants, which can lead to productivity and/or population declines or extinction (Moore, 2005). For 

example, the hemlock woolly adelgid killed the hemlock in eastern forests in North America upon 

introduction and the Chestnut blight killed the American chestnut (Lovett et al., 2016). As well, attacks 

from pests can lead to changes in forest structure or composition, interspecies dynamics and gains or 

losses to biological diversity (Allen and Humble, 2000). Generally, Lovett et al. (2016) found that the 

impact on trees happens in two phases. First, there is the initial physical disturbance to the tree 

(defoliation, nutrient blocking, root rot, etc.) and this phase may last for a few months or even years. 

However, the second phase occurs for decades to centuries afterwards. The insect can impact the 

competitiveness of the tree, impact its ability to grow and repair itself, and ultimately, these changes can 

“cascade through the ecosystem” (Lovett et al., 2016). These ecosystem and ecological impacts can later 

be fed into models to calculate the damage or predicted damage from exotic pests.  
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3.2 Economic Impact of Pest Invasions 

The introduction of invasive exotic species into new cities and habitats, or the eruption of a native 

species outside of its usual range, can have profound economic implications. According to Allen and 

Humble (2000), the most common impacts from these disturbances are direct economic costs such as 

damage to timber resource value, tree mortality, growth reduction, reduction in wood quality, cost of 

control and implementation, and unrealized revenue from recreation and tourism. Exotic pests can cause 

substantial costs to the forestry sector in terms of lost revenues from dead or damaged wood caused by 

infestation or feeding. Invasives can damages trees in all stages of development and therefore can 

interfere with both natural and planted forest management objectives (Moore, 2005).   

Overall, invasions of forests from disturbances such as pests are particularly challenging for 

policy makers as there is an “inherent interdependency of ecology and economics,” the ecological 

invasions are often a result of economic processes such as trade and human movement (Holmes et al., 

2010). It is difficult to quantify the economic losses resulting from establishment and spread rates as they 

can be unpredictable and highly variable (Holmes et al., 2010; Liebhold et al., 1995).  As such, 

researchers have developed a variety of methods to quantify the wide array of impacts caused by invasive 

pests in our forests and regions. 

4. Methods of Analyzing Pest Disturbances in Forests  

4.1 Economic Background  

There is a fundamental relationship between the economy and natural resources; economic 

activity uses natural resources to produce valuable goods and services; but, in doing so, economic 

processes also impact natural resources.  In the context of forests, forest disturbances such as introduction 

of foreign pests, are an externality created by trade, an economic activity. These forest disturbances, 

whether it is a forest fire, invasion of native or non-native pest, are events that impede the flow of goods 



 11 

and services provided by forest ecosystems to those whom demand the goods and services (Holmes et al., 

2008, as cited by Niquidet et al., 2015).  

To place a value on this externality caused by pest disturbances, economists use non-market and 

market valuations. Non-market valuation refers to the valuation of goods that cannot be sold in a market 

(such as fresh air or wildlife) and is typically used as environmental valuation in welfare analysis. Market 

valuation refers to the use of market pricing. However, the calculation of non-market values is complex 

and time-consuming, and is often calculated incorrectly (Holmes et al., 2008, as referenced by Niquidet et 

al., 2015). Instead of placing a direct value on the externality itself, we can instead utilize various 

economic evaluation methods to calculate the overall impact of the externality. As per Niquidet et al. 

(2015), “impacts are based on flows, making it necessary to know the different dynamics of forest 

production, with and without the insect across time.” Impact analysis requires the consideration of the 

time value of money, discounting future costs and benefits to a common present value, and requires the 

consideration of forest ecology, with respect to stands as a whole or trees individually (Niquidet et al., 

2015).  

Pest invasion and subsequent management and control strategies can be looked at from two 

different perspectives. Forest managers may also be interested in the impact of pest invasion due to the 

loss in value of their stands. Intensive forest management on productive forestland spurred by pest 

invasions will be costly. Policymakers may be interested in the economic impact of pests in their forests 

because the potential losses generated have direct effects on the forestry sector; however, there may be 

indirect effects that impact other sectors. Economic analysis is required to estimate the value of protecting 

against invasives.  

There is a range of methods one may use to estimate the economic impact of forest pests. This 

essay will focus on two “bookends” of methods of economic analysis: on-site analysis and the macro-

economic level. Economic analysis of the impacts is required to make informed decisions about 
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management and mitigation efforts in forests. The on-site analysis will highlight how stand and operation 

managers can make management decisions that incorporate risk of pest invasion by using stochastic 

dynamic programming. On the other end of the spectrum, policymakers at the federal or provincial level 

need to have credible information to decide if management, suppression or eradication efforts should be 

implemented under threat of invasion. We can utilize a computable general equilibrium (CGE) to 

calculate a broad economic impact analysis of pest invasions in forests and compare it to mitigation costs 

to make informed mitigation decisions at a macro-economic level. The rest of the paper will be laid out as 

follows: description of the method, overview of the theory behind the method, and practical use of the 

method in the context of forestry management. 

4.2 The Micro-Scale Bookend: Stochastic Dynamic Programming 

 Natural disturbance has implications at the stand level that economists can address using 

stochastic dynamic programming. In this section, I discuss stochastic processes, applications of forest 

management using stochastic dynamic programming and provide an example.  

Description of Model  

Forests are complex dynamic systems that are in a state of change at all times. Forest stands 

change with time in terms of quality, growth and mortality; these changes occur naturally or from human 

impact. Therefore, forest growth and yield are not deterministic: one cannot accurately predict the future 

state of the forest from the knowledge of its present state. When dealing with issues in forestry, it is 

important to recognize that there is uncertainty with respect to growth, quality and, especially, risk of 

natural disturbances. Growth and yield are stochastic processes, and managers must incorporate the 

uncertainty of disturbances or changes in growth (yield) into their management decisions. Stochastic 

processes allow for continuous (growth) and jump (disturbance) processes that must be accounted for 

when analyzing long-term horizons in the forestry industry.  
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Stochastic dynamic programming (SDP) is an optimization approach that can help forest 

managers address uncertainty. The stochastic aspect refers to the randomness of variables in the model 

and dynamic programming (DP) refers to the optimization technique whereby many sub-problems are 

recursively solved to provide solutions to the larger problems; it has been referred to as a “divide-and-

conquer” approach or as a Markov decision process. In the case of optimal harvest, SDP will provide an 

optimal solution based on recursively solving the problem for each year of the management horizon.  

Specifically, SDP provides agents with a method to make optimal decisions on different management 

strategies by examining how the state variable evolves over time. A state variable is a measurable 

condition of the system and can be classified by various ecological characteristics such as age, height, 

volume, et cetera.  

To determine optimal harvest policies, the agent must first identify the management objective. 

Typically in forestry, the objective is to optimize the net present value of the expected returns from the 

forest stand over an infinite horizon (Pukkala and Kellomäki, 2012). To develop the SDP model, the 

agent must also identify different management practices that can affect the stand’s growth. Practices such 

as optimal rotation lengths, thinning years and/or intensities, spacing and, ultimately, harvesting can be 

examined within an SDP framework (Pukkala and Kellomäki, 2012). How the stand evolves over time is 

determined by its intrinsic growth and the decisions taken by the forest manager. These decisions could 

be to harvest the stand at some point in time, fertilize or thin the stand, take action against a pest, et 

cetera. Since the system evolves in a stochastic fashion, albeit influenced by the current state of the 

system and the management decision taken, a probability transition matrix is used to represent each 

decision or control variable (Buongiorno and Gilless, 2003). The impact of intrinsic growth and natural 

disturbances, such as wildfire and pest invasions, and the effect of a management or silivicultural decision 

are incorporated in the probability transition matrices. It is assumed that all past information about the 

forest system is embodied in the current state of the system, which is known as the Markov assumption. 

Then using the transition probabilities and the Markov assumption, SDP can solve the optimization 
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problem and determine an optimal management strategy that takes into account uncertainty and the 

dynamics of the forest (Zhou and Buongiorno, 2011). SDP models can be utilized to estimate optimal 

strategies for a range of possible states of the world and therefore can test decisions when it is not feasible 

to test them in the real world (Bogich and Shea, 2008). 

Economic Theory behind the Model  

Central to SDP modeling is the structuring of the stochastic process, which is accomplished using 

Markov chains. (As a result of the Markov assumption, stochastic dynamic programming is sometimes 

referred to as Markov chain programming.) A Markov chain is the process in which the outcome of a 

given event can affect the outcome of the next event. In a Markov chain, there is a given set of states:  

! = {!!, !!, !!… !!}  (1) 

The chain starts in any of these states and then moves successively to the next state. Each move is called a 

“step.” The Markov chain recognizes that the process moves from state to state with some probability, 

which is described using transition probabilities (TPs). If the process is currently in state i, !! , then the 

probability that it will move to state j, !! , is denoted !!" . It is important to note that !!" depends on the 

current state, not the previous state (this is the Markov Assumption). 

Following Buongiorno and Gilless (2003), we can set up an SDP model to depict a forestry management 

scenario. We can first construct a TP matrix for a given time horizon and states S={A, B, C, D, E}:  

Table 1 Structure of a transition probability matrix 
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TP matrices are used to obtain the probability distribution of the next state depending on the initial 

state and can describe the distributions of the different states over time. An initial probability distribution 

provides the probabilities that a forest ecosystem (forest stand) is in various states at time = 0. Generally, 

the probability distribution of the stand’s state in period t, !!, is obtained by multiplying the probability 

distribution of the stand’s state in the previous period, !!!!, by the TP matrix, !.  

!! = !!!! × ! , t=1,…T  (2) 

As T goes to infinity, the vector !! converges to a vector of steady-state probabilities, !∗, which is 

independent of !! (the initial state probability vector). 

Markov chains have been used in the context of forestry, in particular stand growth (Buongiorno 

and Gilless, 2003). Typically in stochastic forestry management problems, stand growth is described by a 

transition probability matrix that describes the probability that a stand would move from one state to 

another (Zhou and Buongiorno, 2011). States can be described in terms of stand volume, for example, 

Low, Medium and High volumes. However, states can also be in terms of other characteristics such as 

age, basal area, volume or diameter of trees (White, 1989).2 Suppose we have the following TP: 

Table 2 Transition probability matrix P 

t t+1 (L) t+1 (M) t+1 (H) 

L 0.40 0.60 0 

M 0 0.30 0.70 

H 0.05 0.05 0.90 

 

Given an initial state probability vector,  

!! =  1    0    0  

 

                                                        
2 The volume of a forest stand, for example, is a continuous state variable. However, it is discretized into as fine or 
coarse a grid as the analyst desires.  
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We can follow the transition of the probabilities of the forest being in a particular state as: 

 

After one step: 

!! =  !!×! = 0.40   0.60   0  

After two steps: 

!! =  !!×! = 0.16   0.42   0.42  

After t steps: 

!! = !!!! × ! for t=1,…T  

Steady-State Probability Vector, !∗: 

!∗ = [0.07   0.12   0.82] 

The vector of steady-state probabilities, !∗, will provide the probabilities of finding a given stand in state 

L, M or H in the long run. The steady state vector, !∗, depends on the process described by the TP matrix.  

The steady state probabilities from the process above provide information on potential timber 

income from the stand. The expected long-run income can be determined by multiplying the steady state 

probability of the stands by their associated harvest amount and the dollar value of the stand as follows: 

! = (!!×!!) + (!!×!!) + (!!×!!)  (3) 

where R is the immediate return from the stand in state i under the stated policy.   

A far more interesting calculation is the present value of the expected returns, taking into account 

the future value of money and discount rate, r.  The discount factor in this case is described by the 

equation:  

! = !
(!!!)!                                                                                                                      (4) 

where n is the step size between stages (usually ten years in forest models). 
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As per Buongiorno and Gilless (2003): 

“We seek the present value of the expected return from a stand, over an infinite horizon, 
given its initial state, and management policy. The computations use backward recursion. 
We assume the present value of the expected return with t periods to go before the 
planning horizon, and then derive the present value of the expected return with t+1 periods 
to go.” 

 

Letting V!" be the present value of the expected returns from an optimally managed stand in state 

i={L,M,H}, managed with a specific harvesting policy and with t periods to go before the end of the 

planning horizon. Then the present value of the expected return with t+1 periods to go is: 

V!,!!! = R! + d(p!"V!" + p!"V!" + p!"V!")  (5) 

For a stand in state i, the expected present value return with t+1 periods to go is equal to the immediate 

return of the stand plus the present value of the expected returns with t periods to go (according to the 

chosen policy). Backward recursion is used in equation (5) above by setting the present value of the 

expected returns with t=0 periods to go at some arbitrary level (e.g., V!" = V!" = V!" = 0). Then we can 

recursively calculate the present value of the expected returns with t=1,2,…T periods to go. Solving the 

SDP model by backward induction allows us to look back in time to determine the optimal strategy at 

each stage to get the desired point at the final stage (Bogich and Shea, 2008). Since the discounting factor 

is less than 1, there will be convergence as t increases: the present value of expected return V!" approaches 

a limit V!∗, the present value of expected return for a stand that starts in state i and is managed according 

to the chosen policy for (infinite) time.  The long-run expected return is found by multiplying the 

expected return for each potential starting state by the steady state probabilities found, !∗.  

Thus far, no decision has been made in terms of choosing an optimal management practice for the 

stands. The Markov chain process simply allows us to predict the evolution of the forest stands under 

uncertainty and estimate the long-run returns to the stand.  We can incorporate Markov chains into the 

Markov decision process to maximize the present value of the forest income over an infinite horizon.  
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 In the initial example of Markov chains, the decision-maker considered stands under two 

management rules: no harvest or harvest when the volume of the stand is high (H). However, with SDP, 

the decision maker has the ability to decide what action to take at any state (e.g., cut or no cut). The 

ability to make a decision instead of abiding by a certain management rule changes the stand state, but 

also changes the TP matrix. Each unique decision will have its own TP matrix (as discussed above): 

Table 3 Transition probability matrix with decision to cut 

t t+1 (L) t+1 (M) t+1 (H) 

L 0.40 0.60 0 

M 0.40 0.60 0 

H 0.40 0.60 0 

 

Table 4 Transition probability matrix with decision not to cut 

t t+1 (L) t+1 (M) t+1 (H) 

L 0.40 0.60 0 

M 0 0.30 0.70 

H 0.05 0.05 0.90 

 

This process is a Markov chain model and is known as a Markov decision process model: decisions at 

each state can lead to different outcomes. We can now incorporate our original objective, maximizing 

income from a stand over an infinite horizon, with the transition matrices from the Markov decision 

process.  

Let !!" be the highest present value of expected return from a stand in state i={L,M,H}, within a 

specific policy rule, with t periods to go before the end of the planning horizon. Therefore, the highest 

present value with t+1 periods to go is related to the highest value with t periods to go by the equation: 

V!,!!! = max [R!" + d p!"#V!" + p!"#V!" + p!"#V!" ,!!" + d(p!"#V!" + p!"#V!" + p!"#V!")]  (7) 
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where p!"# is the probability of a stand moving from state i to L by making the decision, k = {n,c} where 

n = do not cut and c = cut. Equation (7) is known as the Bellman equation (Bellman, 1957). From 

equation (7), we can see that the highest present value of income from the stands with t+1 periods to go is 

equal to the largest immediate return plus the discounted value of the highest expected future returns with 

t periods to go, where it is assumed that the decision in the next period is optimal. 

We can compare the portfolio decisions by calculating the returns from each scenario. Therefore, 

we will choose option Y, as opposed to Z, if and only if: 

R!" + p!"#V!" + p!"#V!" + p!"#V!" > !!" + d(p!"#V!" + p!"#V!" + p!!"V!") (8) 

Similar to the expected returns from the Markov chains, equation (8) can be solved using backwards 

recursion and setting the highest net present value of expected return with t=0 periods to go at some level 

and then calculating highest present value of expected return for t=1,2…T and so on, and highlighting the 

optimal decision (whichever option had the highest present value). Since d<1, the solution will converge 

as time approaches infinity and in the limit will result in, !!∗, the highest present value of the expected 

returns for the stand starting in state i and managed according to the best policy for the infinite time 

horizon.  

We can also find the long-run probability vector and then calculate the expected returns by 

multiplying the highest present value of each state by the long run probability vector (van Kooten and 

Bulte, 2000). To calculate the long-run probability vector, we create a new transition matrix by taking the 

probability vector row for the optimal decision for each state i.  

For example, if the optimal choice were to cut in the low and high volume state and not cut in 

medium volume state, the new transition matrix would be: 
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Table 5 Transition probability matrix with optimal decision rows (Matrix Φ) 

t t+1 (L) t+1 (M) t+1 (H) 

L !!!!  !!"!  !!"!  

M !!"!"  !!!!"  !!"!"  

H !!"!  !!"!  !!"!  

If we assume that the transition matrices are reachable, then the matrix, Φ, can be rewritten as: 

Φ = 
!! !
!!" !
!! !

, where !![!] is the probability of taking optimal action i in given state k  

In order to find the long run probabilities of being in state L, M, or H, we need to solve for 

π=lim!→!!! =
!!
!!
!!

.  

Unfortunately, this result will collapse because the limit of Φ collapses to a null matrix as n à∞ (because 

0≤p≤1). Instead, we can calculate π as follows: 

Let	I	=	
1 0 0
0 1 0
0 0 1

	

And	D=	
0 0 1
0 0 1
0 0 1

 

Then, ! = !(! + ! − Φ)!!=
!!
!!
!!

 

Now, we can simply calculate the expected returns: 

!" = !! !! !!      
!!
!!
!!

 = !!!! + !!!! + !!!! 

where !! is the returns from state i under the optimal decision.  
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Applications in Forestry: Stochastic Dynamic Programming  

 As stated previously, SDP provides agents with a method to make optimal decisions on different 

management strategies by examining how the state variable evolves over time.  In the context of forestry 

management, different strategies such as thinning, reforestation, and fertilization can be examined with 

SDP.  

Previous research has recognized the usefulness of SDP programing as a method of determining 

optimal economic strategies for timber management. The first North American application of dynamic 

programming to a forest production problem was conducted by Hool (1966). Hool (1966) recognized the 

probabilistic nature of forest growth under different management techniques and used dynamic 

programming to maximize harvest volume. Further research improved upon Hool’s original study such as 

Lembersky and Johnson (1975), Lembersky (1976), Kao (1982), Routledge (1980), Martell (1980), and 

Reed and Errico (1984)(as cited by Dempster and Stevens, 1987). White (1989) advised that forestry 

management problems are suitable for stochastic dynamic programming based on the characteristics of 

problems faced by stand managers. For example, dynamic programming problems need to be broken 

down into smaller sub-problems to be solved. In forestry, stand optimization problems can be solved by 

breaking time into intervals (e.g. 1 year, 5 years) at which to take action (thin, fertilize, harvest). 

Additionally, forestry decisions can be described by using a limited number of state variables, such as 

basal area, age, and numbers of trees per hectare. This is useful in SDP because of the “curse of 

dimensionality” – when the number of states at each stage grows, the problem become harder and harder 

to solve. Thus, we can describe forest stands in a few simple states and avoid the curse of dimensionality, 

yet still providing enough detail to differentiate stands.  

 Lastly, White (1989) states that forest stands can adhere to the “principle of optimality” based on 

the time intervals set out at the start of the problem, but it is constrained by it as well. The principle states 

that the “optimal policy for all remaining stages is entirely independent of policies adopted in previous 

stage” (White, 1989). White utilizes an example of fertilization to explain the principle: if a stand in year 
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30 is fertilized, within ten years, it will be described as a stand with the same number of trees and basal 

area as a stand that was not fertilized in the previous stage. The previous actions and decisions made by 

the stand manager are now rendered irrelevant. The constraint placed on the problem is that the time 

interval between the stages must be sufficient enough to guarantee this condition, or else the internal time 

must be increased to ensure the principle of optimality holds. White notes that forest stand optimization 

problems fit the framework for stochastic dynamic programming and therefore dynamic programming can 

be useful for forest managers alike.  

 Teeter and Somers (1993) utilized a SDP program to determine density management for pine 

stands in southern US. It is not possible to maintain the stand at peak growth rate for the age of the 

timber; therefore, stand managers must enter into the stands and thin the trees at various points in the time 

horizon to help maximize growth (and thus value) of the stand. Teeter and Somers create a stochastic 

dynamic model to estimate the optimal number and timing of thinnings to meet their profit maximization 

objective. It was noted that it is wise to account for the dynamics of nature and fluctuations in pricing 

using stochastic methods instead of using deterministic or constant pricing, to help determine 

management decisions since timber prices vary over time and the per-tree value can change as well. The 

model assumed the stumpage prices to be stochastic and follow a Markov process. The results 

demonstrated that optimal net present value associated with the management strategies determined by 

SDP will be greater than those determined by deterministic models. Therefore, harvest decisions (to cut or 

not to cut) and decisions on how much to harvest should be made using stochastic models to account for 

the dynamics of nature and pricing. 

Using SDP to make informed pest management decisions   

In an extension from basic harvesting decisions based on dynamic growth, SDP models can be 

used to make informed decisions on mitigation and management programs for stand managers. The forest 

manager can estimate what his expected returns would be under optimal harvest management if he were 

to make a costly investment to eradicate or suppress the pest population (thus rendering his forest pest-
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free). He can also estimate what his expected returns would be under optimal harvest management if he 

were to let the pest invade his forest, and forgo the eradication/suppression costs. The manager should 

invest in the eradication program if the difference between the expected returns with or without the 

investment in suppression is greater than the cost of the investment in the program. If the program is more 

costly than the potential gain in returns, then it is not advisable to invest in the program.  

We can model pest invasion by running two SDP scenarios: with a pest disturbance (forgoing the 

program) and without a pest disturbance (investing in the program).  As an example of the foregoing 

model, we constructed transition matrices for natural disturbances (e.g., by mountain pine beetle or 

wildfire) and when action is taken to mitigate the disturbance. For each case, we have an associated 

transition matrix if the stand is harvested in any state. We then use the method described above to 

determine the optimal strategy (cut or leave stand uncut) and long-run expected return. We then compare 

the long-run solutions under the “do nothing” to mitigate disturbance and “mitigate” disturbance 

strategies. If the mitigate strategy leads to a higher expected return, it should be pursued as long as the 

difference in returns exceeds the cost of mitigation.  

We created two scenarios and thus two sets of transition matrices: where there is a natural 

disturbance (pest or wildfire) that reduces the probability that a stand will mature fully, and where there is 

a natural disturbance, but mitigation action occurs that increases the probability that a stand will reach 

maturation. The transition matrices have 3 possible states (merchantable volume ranges), 2 scenarios 

(cut/no cut) and solve within 12 iterations.  

First, we created a transition matrix where there is no natural disturbance (due to some mitigation 

action taken by the manager) and the manager has two actions to choose from: cut or no cut. If the 

manager decides to cut, they indirectly set the transition probabilities to the low state of volume  (See 

Table 6). Each cell into the matrix represents the probability that a stand will be in that volume range in 

the next 10 years. From example, entry (1,1) states that the probability that a stand that has 0-400 m3/ha of 
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merchantable volume in period t will be in the same category in year t+1 is 0.30, and that it will be in the 

range of 400-700 m3/ha with probability of 0.7 in year t+1.  

Table 6 Transition probability matrix - no disturbance (mitigation action is taken) and planner harvests 

t t+1 (L) t+1 (M) t+1 (H) 

L (<400m3/ha) 0.3 0.7 0 

M(400-700m3/ha) 0.3 0.7 0 

H(<700m3/ha) 0.3 0.7 0 

 

If the manager decides not to cut, then they allow their stands to grow and thereby lose any 

potential harvesting profits before the end of the time horizon (See Table 7). Thus, the transition 

probabilities do not change, as there is no harvest or disturbance to alter the probabilities. 

Table 7 Transition probability matrix - no disturbance (mitigation action is taken) and planner does not harvest 

t t+1 (L) t+1 (M) t+1 (H) 

L (<400m3/ha) 0.3 0.7 0 

M(400-700m3/ha) 0 0.4 0.6 

H(<700m3/ha) 0 0 1 

 

Next, we formulate a transition matrix where there exists a natural disturbance and the planner 

takes no action to mitigate the problem thus allowing the deteriorating effects of the pest to take over the 

stand. The natural disturbance interferes with stand growth (as mentioned in section one) and can damage 

or kill stands and thus reduce their merchantable volume levels. At this point, the manager has two 

possible actions to take: cut or no cut. If the manager decides to cut, they set all of the transition 

probabilities to the low state of volume (See Table 8).    
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Table 8 Transition probability matrix - disturbance (no mitigation action is taken) and planner harvests 

t t+1 (L) t+1 (M) t+1 (H) 

L (<400m3/ha) 0.4 0.6 0 

M(400-700m3/ha) 0.4 0.6 0 

H(<700m3/ha) 0.4 0.6 0 

 

If the manager decides not to cut, then they allow their stands to grow and thereby lose any 

potential profits from harvesting before the end of the time horizon. Thus, the transition probabilities do 

not change due to the absence of a harvest policy ruling.  

Table 9 Transition probability matrix - disturbance (no mitigation action is taken) and planner does not harvest 

t t+1 (L) t+1 (M) t+1 (H) 

L (<400m3/ha) 0.4 0.6 0 

M(400-700m3/ha) 0.1 0.4 0.5 

H(<700m3/ha) 0.05 0.1 0.85 

 

We use Excel to run the stochastic dynamic program as outlined in the previous section. We use 

the program to run the transition matrices above and converge on a long-run equilibrium solution for the 

two scenarios (disturbance/no mitigation, no disturbance/mitigation). The program also allows us to find 

the long-run probability vector and the expected returns. It is important to note the parameters used to 

calculate the long-run vectors and expected returns. The discount rate utilized in this example is set to 

5%. The returns are arbitrarily set. The return for a low state that is harvested is set to $0/ha, medium state 

is set to $4,472/ha, and high state is set to $7,254/ha. 

We run the SDP model for both scenarios: disturbance (no mitigation action has taken place) and 

no disturbance (mitigation action has taken place). The model converges after 12 iterations and solves for 

the long run expected return. Therefore, the example provides a solution that states that any spending on 
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mitigation that is less than $270.47/ha is worth undertaking as the manager can make a profit off of the 

harvest as $270.47/ha is the threshold value of mitigation. If the cost of mitigation is greater than 

$270.47/ha, the manager is better off doing nothing and running at zero profit (See Table 10 below). 

Table 10 also outlines the optimal harvest decision for each possible state of the forest stand: low, 

medium, high (the optimal choice provides the manager with the highest possible pay off amongst the 

portfolio of options.) For either scenario (disturbance or no disturbance), the optimal choice for the stand 

manager is to not cut the stand if it is in a low volume state and to cut the stand if it is in a medium or 

high volume state.  

Table 10 Calculating threshold cost of mitigation 

Volume Disturbance (No 

Mitigation) 

No Disturbance 

(Mitigation) 

Threshold Cost of Mitigation 

Low $1 622.84 

Optimal choice: No cut 

$1 893.32 

Optimal choice: No cut 

$270.47 

Medium $6 094.84 

Optimal choice: Cut 

$6 365.32 

Optimal choice: Cut 

$270.47 

High $8 876.84 

Optimal choice: Cut 

$9 147.32 

Optimal choice: Cut 

$270.47 

 

The cost of mitigation at the stand level can include the cost of silvicultural practices such as 

thinning, cost of monitoring, or the cost of spraying the stands with substances such as BTK to prevent 

pest invasion. The threshold cost of mitigation is sensitive to the discount rate (See Table 11). As seen 

below, the higher the discount rate, the lower the threshold cost of mitigation. If we discount the future 

more, then we are not willing to pay as much to protect the forest stand against disturbances. 
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Table 11 Threshold costs of mitigation and discount rates 

Discount Rate 
 

Threshold Cost of Mitigation 
 

1% $1 753.37 
2% $902.73 
3% $553.26 
4% $375.30 
5% $270.47 
6% $202.61 
7% $155.84 
8% $122.15 
9% $97.12 

10% $78.08 
 

Thus, it is concluded that a stand manager should take action to mitigate the disturbance if and 

only if the cost to mitigate is less than the threshold hold cost of mitigation as seen above in Table 11. If 

the cost to mitigate is greater than the threshold cost, then the cost of mitigating is greater than the benefit 

of mitigating and thus the manager should leave the stand alone and not take any further action.  

Evaluation of SDP modelling as an analysis tool  

SDP modelling is a powerful tool for analyzing forest management at the stand level as it can 

incorporate uncertainty and account for as many iterations of the problem as required. If there is 

uncertainty in the dynamics of the problem (in our case, the dynamics of the tree growth), then a Markov 

decision process can be adopted. Predictions of long-term effects of disturbances such has pests or fire 

can be difficult due to the immense amount of uncertainty that managers can face such as growth 

uncertainty, price uncertainty and uncertainty about what action to take optimally (Limaei, 2011). 

Therefore, using an SDP model that can represent the stochastic system of a forest stand setting with 

multiple states, can allow the manager to assess possible risks and make decisions on how to harvest their 

stand. However, the SDP model is highly sensitive to the price and stumpage parameters, discount rate, 

rewards of the various actions and of the transition matrices utilized. In addition, the SDP model is 

limited by the use of transition matrices. The transition matrices grow quickly as more states are included 
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in the model, which reduces the accuracy in decision-making or makes the problem impossible to solve, 

which is referred to as the “curse of dimensionality” (White, 1989). Finally, the SDP model depicted here 

assumes that the manager does not take the actions of other managers and the growth or yield of other 

stands into account when making decisions. In reality, we know that the stand manager will not act 

independently of others in the sector as other players and factors will play into their stand management 

decisions.  

4.3 The Macro-Level Bookend: Computable General Equilibrium  

Description of Model 

A computable general equilibrium (CGE) model can be used to assess economic impacts by 

combining microeconomic general equilibrium structure with real economic data. The model is a 

numerical representation of an economy and can be applied to global, multiple-region or single-region 

(country) economies. The CGE model is grounded in neoclassical microeconomic theory where prices are 

the main mechanism used to equate supply and demand across specified sectors of an economy 

(Ochuodho et al., 2012). The CGE model is calibrated using real economic data and can simulate how 

household-firm interactions and flows of capital and goods change in response to exogenous shocks to the 

model. The sectors are linked to each other so that a shock in one sector will have a ripple effect through 

other sectors and will affect factors of production such as labour, capital and land.  

CGE models are “standard tools of empirical analysis, and are widely used to analyze the 

aggregate welfare and distributional impacts of policies whose effects may be transmitted through 

multiple markets” (Wing, 2004). CGE models have become an increasingly popular analysis tool in 

various areas of economics, such as international trade (e.g. Shields and Francois, 1994; Martin and 

Winters, 1996) and environmental regulation (e.g., Weyant, 1999; Boverberg and Goulder, 1996), due to 

their broad scope and flexibility in handling a broad range of policy issues. However, CGE models are 

becoming an increasingly popular method to examine forestry sector impacts due to their ability to 

accommodate different economic conditions and take into account that contraction (or expansion) in one-
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sector can leads to expansion (or contraction) in other sectors (Alavalapati et al., 1998). A number of 

studies have utilized a CGE model to examine the overall economic impacts of forestry supply shocks 

(e.g., Patriquin et al., 2007; Alavalapati et al., 1996, 1999; Ochuodho et al., 2012; Ochuodho and Lantz, 

2014; Corbett et al., 2015) 

Economic Theory behind the Model  

Economic studies shifts in supply and demand of goods and services between households and 

firms. General equilibrium (GE) models study how prices and output are determined in more than one 

market simultaneously. GE focuses on the interactions and flow of capital, labour, goods and money 

between households and firms (as shown in Figure 1 below). Firms are assumed to be perfectly 

competitive, meaning they act as price-takers and are willing to supply any positive amount of output as 

long as price is equal to or greater than marginal cost (Besanko et al., 2011). 

 

 

Relating this to a simple economy, the GE can be best understood by the statement, “Everything 

depends on everything else” (Burfisher, 2011). Real prices are simultaneously determined in GE: price of 

Figure 1 Interactions between firms and households in a general equilibrium analysis (Besanko et al., 2011)	
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goods, price of labour (wage), and price of capital (rent) – all prices are interdependent. In a GE model, 

prices will configure in such a way to equate supply with demand, therefore equating expenditures and 

incomes. Walras’ Law states that, in a competitive equilibrium with a total of N markets, if supply equals 

demand in the first N-1 markets, then supply equals demand in the Nth market as well. On the condition 

that total expenditure must equal total income, if demand equals supply in the first N-1 markets, then 

supply will automatically equal demand, thus clear the market, in the Nth market as well.  

  In the 1980s, the economic literature aimed to apply Walrasian General Equilibrium to a realistic 

economy to evaluate policy options analytically by utilizing real economic data and specifying production 

and demand parameters (Shoven and Whalley, 1984). CGE models were created to mathematically 

represent an economy as a complete system of interdependent components, such as firms, households and 

government. CGE models bridge the gap between economic theory and policy change because CGE 

models can equilibrate economies for different regions and attach values to the projected impacts of 

policy changes (Mäler and Vincent, 2003). Economists use these models to examine various policy issues 

in an attempt to guide policy alternatives in areas such as environmental and resource management issues. 

The CGE model can be calibrated to represent the baseline scenario (no action taken) and then shocked to 

generate the policy scenario (action is taken). The post-policy scenario is created by exogenously 

shocking unique parameters in the model, such as supply or labour that would be impacted by the policy, 

causing the model to recalibrate it and converge to a new equilibrium (Wing, 2004). The pre- and post-

policy equilibrium values can be compared to evaluate the overall impact of the policy. 

Applications in Forestry: Computable General Equilibrium Model  

CGE models have been used to examine how economies will respond to shocks in the forestry 

sector. A variety of topics have been explored, such as impacts of changes in stumpage pricing (Dee, 

1991; Alavalapati et al., 1997) and interactions between land use and deforestation (Persson and 

Munasinghe, 1995; Cattaneo, 2001, 2002). In the past decade, regional CGE models have been 

increasingly used to examine the comprehensive impacts of foreign pest invasions in Canadian forests. 
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The invasion of foreign pests or outbreak of native pests can cause significant damage and hinder the 

productive capabilities of forestry sectors and regional economies. A pest invasion can substantially 

reduce the available supply of logs/timber, which can have reverberating impacts of other sectors such as 

agricultural sector due to the change in land use. A CGE model is a useful method to calculate how 

supply shocks caused by pests can be transmitted through the markets.  

Studies such as Patriquin et al. (2007), Alavalapati et al. (1996, 1999), Ochuodho et al. (2012), 

Chang et al. (2012) and Corbett et al. (2015) have utilized CGE models to examine the overall economic 

impacts of forestry supply shocks. 

Patriquin et al. (2007) looked at the regional economic impacts of mountain pine beetle (MPB) 

infestation in five areas of BC using a regional CGE model. The model tested the sensitivity of economic 

indicators in six economic sectors to changes in forestry exports due to MPB attack by assuming that the 

MPB infestation would directly impact timber supply. Results showed that there will be regional 

differences in the sensitivity of forestry export shocks and concluded that there exists a need for specific 

regional assistance to mitigate the future impacts of MPB. In the short term, local economies experienced 

boosts due to increased salvage harvests. However, in the long term, due to the shortage of timber supply, 

there would be negative impacts for the broad economy.  

Ochuodho et al. (2012) examined the future impacts of climate change and forest adaptation in 

Canada from 2010 to 2080.  The study examined 16 various adaptation, economic growth, climate change 

and timber supply scenarios. The model utilized six regions for the CGE model with 15 sectors defined to 

examine overall impacts. Findings suggest that the physical and economic impacts of climate change in 

Canadian forests will be substantial and unequally distributed across the regions.  

 Chang et al. (2012) utilized a CGE model to study the potential economic impact of the future 

SBW spread in New Brunswick. They relied on a SBW DSS (Decision Support System), created by 

Chang et al. (2007), to predict stand volume yield changes. Chang et al. integrated the pest population and 

stand dynamics into the CGE to examine how the harvest and associated industries will change over time. 
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The CGE model was a single-region recursive model, presented nine economic sectors with three primary 

production inputs (land, labour and stumpage), assumed steady growth rates and was calibrated to New 

Brunswick regional economy 2006 levels. The stumpage value was shocked in the model for sixteen 

different scenarios with varying outbreak severities, control levels and management techniques. The 

results demonstrate that a future SBW outbreak, either moderate or severe, will result in a $3.3-$4.7 

billion decrease in present value output.  

Most recently, Corbett et al. (2015) utilized a static, recursive CGE model to study the overall 

economic impact of the MPB epidemic in British Columbia. The MPB, a native forest pest to Canada, 

killed approximately 723 million cubic metres of forest from the early 1990s to mid-2000s, causing a 

massive supply shock in the BC forestry sector. The initial response to the epidemic by the BC 

government was to increase the annual allowable cut (AAC), the amount of wood harvested in a given 

year to ensure sustainability of the forest. The AAC uplift was imposed with the purpose of capturing the 

value of dead timber before it was rendered no longer merchantable by the MPB infestation (Patriquin et 

al., 2007). The AAC spiked in the initial years after the infestation; however, stands will take several 

decades to regrow in BC and thus the projected AAC will decline over the next several decades.   

To model this, Corbett et al. (2015) used a static CGE model for the province of BC to simulate 

changes in provincial AAC as changes in stumpage. The model was calibrated to BC using 2009 

symmetric IO models from Statistics Canada (Statistics Canada, 2011, 2012), and the economy was 

aggregated into 21 sectors. The three primary factors of production were specified as labour, capital and 

stumpage. In order to isolate stumpage as an input, Corbett et al. (2015) followed Ochuodho and Lantz 

(2014) and used total revenues from the sale of timber from provincial Crown stumpage data as the input 

value and subtracted it from capital in the forestry and logging sector. The CGE model was set up as a 

static model and solved recursively from 2009 to 2054. Similar to Ochuodho and Lantz (2014), in every 

period “the capital stock was updated based on a capital accumulation equation based on an endogenous 

growth rate as determined by endogenous return on capital rate and endogenous total savings. Total 
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labour supply was assumed to grow exogenously at a constant rate over time… stumpage supply in all 

regional forestry and logging sectors was exogenously fixed over time under baseline conditions.”    

The CGE model and its equations were solved using General Algebraic Modeling System 

(GAMS) software, using a non-linear programming algorithm along with CONOPT3 solver (GAMS, 

2012). The model was solved using two different scenarios: initial benchmark for 2009 and reduced 

timber supply caused by MPB. The initial benchmark replicated 2009 IO tables and the model solved for 

the dynamic base case growth path of the economy that allowed for capital and labour to grow. The 

reduced timber supply scenario captured the change in AAC by incorporating a constant reduction in 

AAC each year starting in 2010. The timber reduction was obtained by calculating the percentage 

decrease in estimated AAC from 2009 to 2054 from the provincial-level projections of the AAC (BC 

Ministry of Forest, Lands and Natural Resource Operations, 2012). The stumpage input was shocked each 

year the annual average change in timber to simulate the decline in AAC. Since stumpage is exogenous to 

the model, it is assumed that overall stumpage values fall with AAC. In order to calculate the overall 

impact of the MPB, the study compared the baseline scenario to the reduced-AAC scenario growth paths 

from 2009 to 2054. Using a 4% discount rate, the study suggests that the projected MPB epidemic will 

result in a $57.37 billion decline in BC’s GDP in present value terms. The results also demonstrated a 

reduction in overall output and income when stumpage falls, which ultimately impacts consumption, 

investment, exports and imports. The study captured both the indirect and direct impacts of the MPB 

infestation on the provincial scale.  

Evaluation of CGE as an analysis tool  

CGE models provide useful insights into the effects of a policy change by comparing results of a 

baseline reference path of an economy to the results of a path where inputs have been exogenously 

shocked to simulate the potential policy change. CGE models were first created to overcome the 

limitations of Input Output (IO) models (Niquidet et al., 2015). IO models are used in economic impact 

analysis as they numerically represent inter-industry production and linkages between various sectors that 
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result from increased demand and consumption in a unique sector (Wang and Charles, 2010). However, 

IO models do not provide a “theoretically-complete picture of either the supply or the demand size of the 

economy, in that it does not envision optimizing behavior on the part of economic organisms faced with 

alternative courses of action” (Christ, 1955). IO models are limited to their linear relationships, fixed 

prices, and do not take into account that agents in the economy can make optimal decisions based on 

options available to them and changes in relative prices (Christ, 1955; Alavalapati et al., 1998; Bandara, 

1991).   

CGE models can overcome these limitations as they incorporate “endogenous demand and price 

system, substitutability in production and demand, optimization of agent behavior, factor scarcity, and a 

more detailed treatment of institutions and the macroeconomic environment” (Alavapalati et al., 1997). 

CGEs are more effective in assessing the distributional impacts of macroeconomic policy changes in 

regional economies (Buetre et al., 2003).   

Other benefits of using CGE models to analyze economic impact issues include the accounting 

and theoretical consistency of the modeling framework. Accounting consistency occurs because 

expenditures can never exceed incomes and the allocation is consistent because all factor markets must 

clear due to Walras’ law. As well, CGE models can address a variety of policy issues due to its ability to 

model inter-industry linkages, which allows the user to uncover the ripple effects in the economy that 

may not be intuitive.  

There are some drawbacks to using CGE models in analysis, however. For example, CGE models 

are thought of as “black-boxes” due to the complexity of the model’s structure and inability of the public 

to analyze particular results (Wing, 2004). Further, CGE models do not account for the possibility of 

factor inputs being transferred to regions outside of the specified economy. For example, the model 

cannot predict the capability of labourers to move outside of the economy to search for jobs if there is a 

downturn in the economy and therefore results can be biased. Third, the results of the CGE model are 

extremely sensitive to parameter and specification settings. Therefore, lack of region-specific 

specifications or errors in the specifications can result in large biases and inaccuracies in the results. 
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Finally, the model cannot take into account how the policy change can impact economies outside the 

scope of the model, which can in fact indirectly impact sectors in the specified economy. These feedback 

effects are ignored and can impact the results of the analysis. To overcome this issue, a multi-region or 

global CGE model would be required.  

5. Discussion and Conclusion  

Forest insect infestations can grow to be severe and can cause economic problems due to the 

damage and destruction they can cause in commercially valuable forests. Therefore, there is a need for 

pest management as infestations increase and become more damaging to stands. The issue of forest 

management and dealing with pests or disturbances such as wildfires can be examined from two 

perspectives: the forest manager at a microeconomic level or the policymaker from a macroeconomic 

level. The forest manager needs to take into account growth uncertainty in order to make his decision on 

whether to harvest his stand or not. The policymaker needs to understand how a pest invasion in the 

forestry sector can have indirect and direct effects in the sector itself and other sectors as well such as 

agriculture in order to make a choice on optimal actions to take. Both perspectives have a need to 

compare the cost of doing nothing and the cost of taking action to mitigate the pest and this will play an 

important role in their decision-making. For the forest manager, they will take action against the pest if 

the impact on their future income streams is higher than the cost of taking action. Whereas for the policy 

maker, they will need to take action against the pest if the overall impact on the economy is high enough 

to warrant action.  

Therefore, forest management decisions require a range of analysis tools in order to make optimal 

management choices. The forest manager does not take into account the impact that the pest has on other 

managers or other forest stands outside of his jurisdiction. Therefore, the forest manager would be best 

off using a stochastic dynamic programming model to account for uncertainty in growth, prices or 

stumpage rates, interest rates, and other factor that can impact his stand-alone and compare the cost of 
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mitigation to the result. Whereas, the policymaker at a federal or provincial level needs to account for all 

stands and all transactions that will be impacted by a pest in their jurisdiction which can encompass the 

whole country or a few timber supply areas. Therefore, the policymaker is best off using a computable 

general equilibrium model that will allow him to account for all the indirect and direct effects that a loss 

in timber supply or revenue will have on the macro economy.  

It is important that we develop a range of economic analysis tools, as each decision-maker is 

unique and require different inputs to solve for their optimal management strategies. Pest management is 

an example of a management practice that requires different analysis tools to create optimal strategies for 

the various players in the economy. Pest invasion, either native or non-native, poses a risk to the value of 

forest stands and the supply of timber in Canada. Examples of invasions such as the native mountain pine 

beetle in British Columbia and Alberta or the gypsy moth in eastern Canada can show that pest invasions 

can be extremely costly and require attention from policymakers and stand managers in the early stages to 

prevent significant losses.  

Future research can focus on incorporating greater use of population dynamics of invasive pests. 

For SDP modelling, future research should focus on improving the transition matrices for the stand 

growth when faced with a pest invasion, wildfire, or combination of both. This can include speaking to 

specialist to understand how different stands will grow or decline as a result of specific pests or changes 

in the frequency of wild fires. Therefore, future research can focus on specific significant pests in Canada 

such as mountain pine beetle crossing into central and eastern Canada or the potential for gypsy moth to 

invade British Columbia. Another topic may focus on the links between fire suppression and pest 

outbreaks as fire suppression can increase the likelihood of pest outbreaks due to a greater supply of 

vulnerable trees. It is important to note that the transition matrices are sensitive to the age and species of 

the stand. For CGE modelling, future research should focus on improving the timber loss that will result 

each year as a result of pest invasion. This can improve the accuracy of the results and will better inform 

policymakers on the consequences of taking action or no action when faced with a pest management 
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issue. Finally, climate change and carbon accounting will influence the results of these two analysis 

methods and can be accounted for as well with future research.  

To close, pest management problems can be solved using a range of economic tools; however, 

SDP models and CGE models can be considered bookends of the tools as they focus on the 

microeconomic stand level and the overall macroeconomic level for governments. Economists can help 

stand managers and policymakers make decisions on whether to take action and what action to take by 

weighing the costs and benefits in the face of uncertainty and with respect to the direct and indirect 

consequences that may arise as result of the actions taken. To improve the accuracy of these tools, it is 

important that policymakers, economists and scientists/researchers work together to incorporate spatial 

processes; pest spread rates and pest damage in trees into the models to make them as realistic as possible. 
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Appendix – TIPSY Example of SDP Model 
 

We can use realistic data to create a transition probability matrix and construct an SDP model. To 

begin constructing the example model, we obtained stand yield data for the Quesnel timber supply area 

(TSA) using British Columbia Ministry of Forests, Lands and Natural Resource Operations’ TIPSY 

model (2017). TIPSY is the ministry’s growth and yield prediction model, it predicts the yield of both 

managed and unmanaged stands.3 TIPSY is the primary source for yield tables for managed stands and 

for economic analyses for the forest industry in BC. The growth data are in ten-year increments, starting 

at 0 and followed by 20 decades (mature trees are 200+years old) and provides yield tables for single 

species even-aged stands. For each decade, the data provide merchantable volume per hectare, volume per 

tree, recovered lumber volume (measured in mbf), and sawmill and other residuals. We use TIPSY data to 

formulate transition matrices for the Quesnel TSA for two scenarios: where there is a natural disturbance 

(pest or wildfire) that reduces the probability that a stand will mature fully, and where there is a natural 

disturbance, but mitigation action occurs that increases the probability that a stand will reach maturation. 

The transition matrices have 18 possible states (merchantable volume ranges), 2 scenarios (cut/no cut) 

and solve within 12 iterations.  

First, the TIPSY data provide a transition matrix where there is no natural disturbance (due to 

some mitigation action taken by the manager) and the manager has two actions to choose from: cut or no 

cut. If the manager decides to cut, they indirectly set the transition probabilities to the low state of volume  

(See Table 12). Each cell into the matrix represents the probability that a stand will be in that volume 

range in the next 10 years. From example, entry (1,1) states that the probability that a stand that has 0-20 

m3/ha of merchantable volume in period t will be in the same 0-20 m3/ha category in year t+1, and that it 

will be in the range of 20-40 m3/ha with probability of 24% in year t+1. %.  

                                                        
3 TIPSY refers to the Table Interpolation Program for Stand Yields. Further information can be located at: 
https://www.for.gov.bc.ca/hts/growth/tipsy/tipsy_description.html 
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Table 12 Appendix - Transition probability matrix - no disturbance (mitigation action is taken) and planner harvests 
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(0,20]	 0.76	 0.24	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	

(20,	40]	 0.76	 0.24	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	

(40,	60]	 0.76	 0.24	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	

(60,	80]	 0.76	 0.24	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	

(80,	100]	 0.76	 0.24	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	

(100,	120]	 0.76	 0.24	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	

(120,	140]	 0.76	 0.24	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	

(140,	160]	 0.76	 0.24	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	

(160,	180]	 0.76	 0.24	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	

(180,	200]	 0.76	 0.24	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	

(200,	220]	 0.76	 0.24	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	

(220,	240]	 0.76	 0.24	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	

(240,	260]	 0.76	 0.24	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	

(260,	280]	 0.76	 0.24	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	

(280,	300]	 0.76	 0.24	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	

(300,	320]	 0.76	 0.24	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	

(320,	340]	 0.76	 0.24	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	

(340,	360]	 0.76	 0.24	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	

 

If the manager decides not to cut, then they allow their stands to grow and thereby lose any 

potential harvesting profits before the end of the time horizon (See Table 13). Thus, the transition 

probabilities do not change, as there is no harvest or disturbance to alter the probabilities. 
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Table 13 Appendix - Transition probability matrix - no disturbance (mitigation action is taken) and planner does not 
harvest 
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(0,20]	 0.76	 0.24	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	

(20,	40]	 0.00	 0.29	 0.71	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	

(40,	60]	 0.00	 0.00	 0.25	 0.75	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	

(60,	80]	 0.00	 0.00	 0.00	 0.20	 0.80	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	

(80,	100]	 0.00	 0.00	 0.00	 0.00	 0.00	 0.80	 0.20	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	

(100,	120]	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.80	 0.20	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	

(120,	140]	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.80	 0.20	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	

(140,	160]	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.75	 0.25	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	

(160,	180]	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.80	 0.20	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	

(180,	200]	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.75	 0.25	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	

(200,	220]	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.70	 0.30	 0.00	 0.00	 0.00	 0.00	 0.00	

(220,	240]	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.80	 0.20	 0.00	 0.00	 0.00	 0.00	

(240,	260]	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.43	 0.57	 0.00	 0.00	 0.00	 0.00	

(260,	280]	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.29	 0.71	 0.00	 0.00	 0.00	

(280,	300]	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.57	 0.43	 0.00	 0.00	

(300,	320]	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.50	 0.50	 0.00	

(320,	340]	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.50	 0.50	

(340,	360]	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 1.00	

 

Next, we formulate a transition matrix where there exists a natural disturbance and the planner 

takes no action to mitigate the problem thus allowing the deteriorating effects of the pest to take over the 

stand. The natural disturbance interferes with stand growth (as mentioned in section one) and can severely 

damage or kill stands and thus reduce their merchantable volume levels. Thus, the transition probability 

matrix resembles a lower triangular matrix, as the stands do not reach high volumes.  At this point, the 

manager has two possible actions to take: cut or no cut. If the manager decides to cut, they set all of the 

transition probabilities to the low state of volume (See Table 14).    
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Table 14 Appendix - Transition probability matrix - Disturbance (no mitigation action is taken) and planner harvests 

Range	of	Volume	(m3/ha)	
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(0,20]	 0.76	 0.24	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	

(20,	40]	 0.76	 0.24	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	

(40,	60]	 0.76	 0.24	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	

(60,	80]	 0.76	 0.24	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	

(80,	100]	 0.76	 0.24	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	

(100,	120]	 0.76	 0.24	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	

(120,	140]	 0.76	 0.24	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	

(140,	160]	 0.76	 0.24	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	

(160,	180]	 0.76	 0.24	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	

(180,	200]	 0.76	 0.24	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	

(200,	220]	 0.76	 0.24	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	

(220,	240]	 0.76	 0.24	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	

(240,	260]	 0.76	 0.24	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	

(260,	280]	 0.76	 0.24	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	

(280,	300]	 0.76	 0.24	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	

(300,	320]	 0.76	 0.24	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	

(320,	340]	 0.76	 0.24	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	

(340,	360]	 0.76	 0.24	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	

 

If the manager decides not to cut, then they allow their stands to grow and thereby lose any 

potential profits from harvesting before the end of the time horizon. Thus, the transition probabilities do 

not change due to the absence of a harvest policy ruling.  
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Table 15: Appendix- Transition probability matrix - disturbance (no mitigation action is taken) and planner does not 
harvest  

Range	of	Volume	(m3/ha)	
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(0,20]	 0.76	 0.24	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	

(20,	40]	 0.75	 0.25	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	

(40,	60]	 0.00	 0.74	 0.26	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	

(60,	80]	 0.00	 0.71	 0.29	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	

(80,	100]	 0.00	 0.00	 0.80	 0.20	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	

(100,	120]	 0.00	 0.00	 0.81	 0.19	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	

(120,	140]	 0.00	 0.00	 0.00	 0.82	 0.18	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	

(140,	160]	 0.00	 0.00	 0.00	 0.85	 0.15	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	

(160,	180]	 0.00	 0.00	 0.00	 0.84	 0.16	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	

(180,	200]	 0.00	 0.00	 0.00	 0.00	 0.85	 0.15	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	

(200,	220]	 0.00	 0.00	 0.00	 0.00	 0.86	 0.14	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	

(220,	240]	 0.00	 0.00	 0.00	 0.00	 0.75	 0.25	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	

(240,	260]	 0.00	 0.00	 0.00	 0.00	 0.80	 0.20	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	

(260,	280]	 0.00	 0.00	 0.00	 0.00	 0.00	 0.85	 0.15	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	

(280,	300]	 0.00	 0.00	 0.00	 0.00	 0.00	 0.86	 0.14	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	

(300,	320]	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.86	 0.14	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	

(320,	340]	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.87	 0.13	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	

(340,	360]	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.80	 0.20	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	

 

We use the statistical computing program R to run the stochastic dynamic program as outlined in 

the previous section. We use the R program to run the transition matrices above and converge on a long-

run equilibrium solution for the two scenarios (disturbance/no mitigation, no disturbance/mitigation). The 

program also allows us to find the long-run probability vector and the expected returns. It is important to 

note the parameters used to calculate the long-run vectors and expected returns. The discount rate utilized 

in this example is set to 5%. The action to “not cut” has no value – the forest is left to grow and to harvest 

at a later date. The action to “cut” has a value of: 

!"# !"#$% = ! × ! ! −  ! (9) 
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where a is the price per m3/ha of merchantable wood, where v(t) is the volume of the harvest of 

merchantable wood,  and b is the price incurred to cut the wood at that point in time.  

We run the SDP model for both scenarios: disturbance (no mitigation action has taken place) and 

no disturbance (mitigation action has taken place). The model converges after 12 iterations and solves for 

the long run expected return. The disturbance (no mitigation action has taken place) scenario converges 

and solves for an expected return of $0/ha. The no disturbance (mitigation action has taken place) 

scenario converges as well and solves for an expected return of $29.43/ha. Therefore, the example 

provides a solution that states that any spending on mitigation that is less than $29.43/ha is worth 

undertaking as the manager can make a profit off of the harvest. For any spending on mitigation that is 

greater than $29.43/ha, the manager is better off no taking the mitigation action and running at zero profit. 

The cost of mitigation at the stand level can include the cost of silvicultural practices such as thinning 

each cycle, cost of monitoring, or the cost of spraying the stands to prevent pest invasion.  

 


